Open Access


Read more
image01

Online Manuscript Submission


Read more
image01

Submitted Manuscript Trail


Read more
image01

Online Payment


Read more
image01

Online Subscription


Read more
image01

Email Alert



Read more
image01

Original Research Article | OPEN ACCESS

Bergamot regulates oxidized low-density lipoprotein-induced inflammation and foam cell formation of human umbilical vein endothelial cells by regulating SIRT1/NF-κB pathway

Fan Zhao, Taimin Liu, Bo Liu , Jun Yin

Department of Cardiology, The Sixth Hospital of Wuhan, Affiliated Hospital of Jianghan University, Wuhan, Hubei Province 430000, China;

For correspondence:-  Bo Liu   Email: bliu5183@163.com   Tel:+8613037189055

Accepted: 28 February 2024        Published: 31 March 2024

Citation: Zhao F, Liu T, Liu B, Yin J. Bergamot regulates oxidized low-density lipoprotein-induced inflammation and foam cell formation of human umbilical vein endothelial cells by regulating SIRT1/NF-κB pathway. Trop J Pharm Res 2024; 23(3):485-490 doi: 10.4314/tjpr.v23i3.1

© 2024 The authors.
This is an Open Access article that uses a funding model which does not charge readers or their institutions for access and distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0) and the Budapest Open Access Initiative (http://www.budapestopenaccessinitiative.org/read), which permit unrestricted use, distribution, and reproduction in any medium, provided the original work is properly credited..

Abstract

Purpose: To investigate the effects of bergamot (BGM) on the progression of atherosclerosis, and to unravel the mechanism of action.
Methods: Oxidized low-density lipoprotein (Ox-LDL)-induced HUVECs were used as an in vitro model of atherosclerosis. CCK-8, flow cytometry (FCM), and enzyme-linked Immunosorbent assay (ELISA) assays were performed to confirm the effects of BGM on the viability and inflammation of ox-LDL-induced HUVECs. Oil-red staining and immunoblot tests were conducted to determine the effects of BGM on foam cell formation and macrophage polarization. Furthermore, The mechanism of action of BGM was examined by immunoblot studies.
Results: BGM alleviated the ox-LDL-stimulated decline in HUVEC cell viability, and the ox-LDL-stimulated HUVEC inflammation, but inhibited ox-LDL-stimulated foam cell formation and macrophage polarization in vitro (p < 0.05). In addition, BGM regulated SIRT1/NF-κB pathway, thereby alleviating atherosclerosis (p < 0.05).
Conclusion: BGM regulates OX-LDL-induced inflammation and foam cell formation of HUVECs by mediating SIRT1/NF-κB pathway, and therefore can potentially serve as a drug for the treatment of atherosclerosis.

Keywords: Bergamot (BGM), Atherosclerosis, OX-LDL, HUVEC, Foam cell, SIRT1/NF-?B pathway, Macrophage polarization

Impact Factor
Thompson Reuters (ISI): 0.523 (2021)
H-5 index (Google Scholar): 39 (2021)

Article Tools

Share this article with



Article status: Free
Fulltext in PDF
Similar articles in Google
Similar article in this Journal:

Archives

2024; 23: 
1,   2,   3,   4
2023; 22: 
1,   2,   3,   4,   5,   6,   7,   8,   9,   10,   11,   12
2022; 21: 
1,   2,   3,   4,   5,   6,   7,   8,   9,   10,   11,   12
2021; 20: 
1,   2,   3,   4,   5,   6,   7,   8,   9,   10,   11,   12
2020; 19: 
1,   2,   3,   4,   5,   6,   7,   8,   9,   10,   11,   12
2019; 18: 
1,   2,   3,   4,   5,   6,   7,   8,   9,   10,   11,   12
2018; 17: 
1,   2,   3,   4,   5,   6,   7,   8,   9,   10,   11,   12
2017; 16: 
1,   2,   3,   4,   5,   6,   7,   8,   9,   10,   11,   12
2016; 15: 
1,   2,   3,   4,   5,   6,   7,   8,   9,   10,   11,   12
2015; 14: 
1,   2,   3,   4,   5,   6,   7,   8,   9,   10,   11,   12
2014; 13: 
1,   2,   3,   4,   5,   6,   7,   8,   9,   10,   11,   12
2013; 12: 
1,   2,   3,   4,   5,   6
2012; 11: 
1,   2,   3,   4,   5,   6
2011; 10: 
1,   2,   3,   4,   5,   6
2010; 9: 
1,   2,   3,   4,   5,   6
2009; 8: 
1,   2,   3,   4,   5,   6
2008; 7: 
1,   2,   3,   4
2007; 6: 
1,   2,   3,   4
2006; 5: 
1,   2
2005; 4: 
1,   2
2004; 3: 
1
2003; 2: 
1,   2
2002; 1: 
1,   2

News Updates